Choiceless Polynomial Time on Structures with Small Abelian Colour Classes
نویسندگان
چکیده
Choiceless Polynomial Time (CPT) is one of the candidates in the quest for a logic for polynomial time. It is a strict extension of fixed-point logic with counting (FPC) but to date it is unknown whether it expresses all polynomial-time properties of finite structures. We study the CPT-definability of the isomorphism problem for relational structures of bounded colour class size q (for short, q-bounded structures). Our main result gives a positive answer, and even CPT-definable canonisation procedures, for classes of q-bounded structures with small Abelian groups on the colour classes. Such classes of q-bounded structures with Abelian colours naturally arise in many contexts. For instance, 2-bounded structures have Abelian colours which shows that CPT captures Ptime on 2-bounded structures. In particular, this shows that the isomorphism problem of multipedes is definable in CPT, an open question posed by Blass, Gurevich, and Shelah.
منابع مشابه
Definability of Cai-Fürer-Immerman Problems in Choiceless Polynomial Time
Choiceless Polynomial Time (CPT) is one of the most promising candidates in the search for a logic capturing Ptime. The question whether there is a logic that expresses exactly the polynomial-time computable properties of finite structures, which has been open for more than 30 years, is one of the most important and challenging problems in finite model theory. The strength of Choiceless Polynom...
متن کاملOn Polynomial Time Computation over Unordered Structures
This paper is motivated by the question whether there exists a logic capturing polynomial time computation over unordered structures. We consider several algorithmic problems near the border of the known, logically defined complexity classes contained in polynomial time. We show that fixpoint logic plus counting is stronger than might be expected, in that it can express the existence of a compl...
متن کاملIs Polynomial Time Choiceless?
A long time ago, Yuri Gurevich made precise the problem of whether there is a logic capturing polynomial-time on arbitrary finite structures, and conjectured that no such logic exists. This conjecture is still open. Nevertheless, together with Andreas Blass and Saharon Shelah, he has also proposed what still seems to be the most promising candidate for a logic for polynomial time, namely Choice...
متن کاملStrong extension axioms and Shelah's zero-one law for choiceless polynomial time
This paper developed from Shelah's proof of a zero-one law for the complexity class \choiceless polynomial time," de ned by Shelah and the authors. We present a detailed proof of Shelah's result for graphs, and describe the extent of its generalizability to other sorts of structures. The extension axioms, which form the basis for earlier zero-one laws (for rst-order logic, xed-point logic, and ...
متن کاملChoiceless Polynomial Time
Turing machines define polynomial time (PTime) on strings but cannot deal with structures like graphs directly, and there is no known, easily computable string encoding of isomorphism classes of structures. Is there a computation model whose machines do not distinguish between isomorphic structures and compute exactly PTime properties? This question can be recast as follows: Does there exist a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014